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The energy levels of lattice gauge theory in a small twisted box 
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We compute the low-lying energy levels in SU(2) lattice gauge theory with twisted boundary conditions. Lattice artifacts are 
sizable for the negative parity sector. Convergence to the continuum limit is slowed down due to logarithmic corrections. On the 
other hand finite size effects are less than in the case of periodic boundary conditions, as borne out by Monte Carlo simulations. 

I. Introduction 

The last few years have seen a s teady accumula t ion  
of  Monte  Carlo da ta  and analyt ic  work in pure 
(quarkless)  Q C D  and its bound  states the glueballs. 
The strategy is to measure  masses as a funct ion of  the 
ratio z o f  the size L o f  the finite volume (in which 
s imulat ions  are necessarily pe r fo rmed)  to the 
Compton  wavelength o f  the glueball in quest ion (for  
a review see ref. [ 1 ] ). For  small enough values of  z 
the results can be compared  with per turba t ive  calcu- 
lations, a s imple consequence o f  asymptot ic  free- 
dom.  The physical  mass is ob ta ined  for large z where 
the approach to the infini te  volume mass is known to 
be exponent ia l ly  fast [2]  (for per iodic  boundary  
condi t ions) .  One obvious quest ion is: what  z is large 
enough? Presumably  this is the size at which string 
format ion  sets in. By moni tor ing  t ime correlat ions 
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between space-like Polyakov loops one can see the 
advent  of  such a regime. This way of  proceeding has 
a two-fold aim: 

( 1 ) To have control  over  finite size effects. 
(2)  More ambit iously,  to get f rom the in termedi-  

ate regime (between the per turba t ive  and the string 
domains )  an idea o f  how conf inement  works. 

Some t ime ago, two of  us [ 3 ] p roposed  a method  
which may at least help with po in t  (1) .  We intro- 
duced boundary  condi t ions  that  respect the fast ap- 
proach to the large volume limit,  but  decrease the fi- 
nite size effects in the perturbat ive domain.  These are 
the twisted boundary conditions o f ' t  Hooft  [ 4 ], which 
are per iodic  modulo  a gauge t ransformat ion.  We 
s tudied pure S U ( 2 )  gauge theory with a twist that  
preserved cubic invariance,  therefore making com- 
par ison with the usual per iodic  boundary  condi t ions  
straightforward.  The low-lying energy levels were 
computed  in the con t inuum l imit  [ 5 ]. 

In this note these results are extended to a finite 
lat t ice spacing. The lay-out o f  this paper  is as follows. 
In section 2 the calculat ion o f  the spectrum is ex- 
plained.  Section 3 deals with the results, and  in sec- 
t ion 4 a check is made  on these results by means  of  
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the Ward identities. A short comment  on the effects 
of  fermion loops is contained in section 5. Finally in 
section 6 the conclusions are presented and compar- 
ison with Monte Carlo results is made. 

2. The twisted box 

Twisted boundary conditions are boundary condi- 
tions which are periodic modulo a gauge transfor- 
mation. For consistency we require the gauge field to 
be single valued. Consequently, in an SU (N) gauge 
theory, permissible twists can be characterized by a 
matrix, nu~, whose elements are integers modulo N. 
This measures the commutativi ty of  the gauge trans- 
formations which define the boundary conditions 
[4 ]. For twists in space-space directions we define 't 
Hooft 's  abelian magnetic flux vector m by 

mi = ~.ijktljk • ( 1 ) 

Another useful concept in discussing gauge theory in 
a finite volume is the abelian electric flux e, which, 
like m, is integral modulo N. The physical Hilbert 
space decomposes into sectors of  given e which are 
representations of  the group of  "singular" gauge 
transformations [periodic modulo the centre group, 
Z ( N )  ], in much the same way as the 0 parameter 
distinguishes sectors related by "large" gauge 
transformations. 

In a small twisted box the perturbative structure of  
the electric sectors is quite different from the purely 
periodic case. In the latter case one has [restricting 
ourselves to SU (2) gauge theory ] 23 degenerate elec- 
tric sectors. They are related by the action of  Poly- 
akov loops winding around the volume in the space 
directions. But the adoption of  a twist reduces this 
degeneracy. This has a simple physical origin. In the 
absence of  twist, the vacua of  the eight electric sec- 
tors are string states with zero momentum,  but when 
a magnetic flux is present the string states will pick 
up a three-momentum equal to n / L  times the Poynt- 
ing vector e × m (modulo 2 ). For example, in the case 
m = ( 1, 1, 1 ) which we consider below, only two string 
states keep zero-momentum: e = ( 0 , 0 , 0 )  and e=  
( 1,1, 1 ). In this note we will only consider perturba- 
tion theory in the Fock space of  one of  these ground 
states and neglect tunneling effects between them. 

We now briefly review how we compute the low- 

lying levels in perturbation theory, in a pure SU(2)  
gauge theory with a twist m = ( 1, 1, 1 ) [ 5 ]. This twist 
is incorporated by the following boundary conditions 
on the vector potentials Au: 

A u ( x + L e k ) = i a k A ~ , ( x ) ( i a k )  t , k = 1 , 2 , 3 ,  (2) 

where L is the length of  the box in the space direc- 
tions, e~ is the unit vector in the kth direction, and ak 
are the Pauli matrices. 

The boundary conditions can easily be diagonal- 
ized in colour space. In the basisAu=aaA~u,  eq. (2) 
becomes 

A ~ ( x  + Lek)  = ( - 1 ) '+~ 'kA~(x )  . (3) 

The momentum spectrum of  the gauge field contains 
half-integral multiples of  2 n / L ,  and can be summa- 
rized by writing the total momentum asp =Ps +Pc with 
Ps the "periodic" spatial momentum 

2n 
t l s =  ~ - ( n l ,  n2, n3)  , niinteger (4) 

andpc one of  the set o f"co lour  momenta"  

7E 7~ 7g 
p c =  Z (0, 1 , -  1), ~ ( -  1,0,1), ~ ( 1 , -  1 ,0 ) .  (5) 

As a consequence the gluon can never have zero three- 
momentum.  Its momentum is always a half-integral 
multiple of  2 n / L  in two directions, corresponding to 
a particle in a periodic box of  length 2L. 

For m = ( 1, 1, 1 ), both the magnetic flux and the 
momentum spectrum are cubic and parity invariant. 
This follows from the twist being defined modulo 2 
so that any component  in the flux vector can be + 1 
or - 1 without changing the results. Because of  this, 
comparison with periodic boundary conditions is 
straightforward. 

The energy levels we wish to compute are those of  
excitations of  physical gauge invariant operators. Let 
us denote the field tensor by G and the covariant de- 
rivative by D. Then the lowest dimensional operators 
are Tr GG, Tr G DG, Tr G DDG, Tr GGG, etc. Being 
gauge invariant they are periodic modulo L. So if their 
excitations are built from perturbative one-gluon 
states then we must consider multigluon states with 
total momentum equal to an integral multiple o f  2to/ 
L. In particular, to extract "masses", we choose that 
momentum to be zero. 

The diagram in fig. 1 shows the correlation for such 
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o(t) ( ~ ~  o(o) 

Fig. 1. Creation and annihilation of a glueball by local gauge in- 
variant sources. The diagram shows the contribution of a two- 
gluon intermediate state, with a single gluon-gluon interaction. 
It is this four-point interaction which determines the O (g2) mass 
shifts. 

with equal and opposite momenta  of  minimal length. 
Neglecting interactions, in the cont inuum they have 
energy 2x/~ n/L. There are 24 such states: we have 
six momentum pairs of  minimal energy as indicated 
in fig. 2, and each of  these pairs has four helicity ori- 
entations. These decompose into irreducible repre- 
sentations of  the cubic group (A~, A2, E, T~ or T2, o f  
dimensions 1, 1, 2, 3 and 3 respectively) according 
to 

a source. I f  the correlation is followed over very large 
times only the lowest energy states are created and 
absorbed by the sources, the propagation o f  higher 
ones being exponentially smaller. In between these 
states interact in such a way that the unphysical po- 
larizations do not contribute at all (see section 4). 
We therefore discuss only matrix elements between 
physical helicity states. 

The lowest-lying levels will be the two-gluon states 

2AI ~2E~TI ~3T2 (positive parity) , 

A, ~ E ~ T 2  (negative par i ty ) .  (6) 

Next come the three-gluon states with total momen-  
tum zero, and total zeroth order energy 3x/~ n/L. 
There are 64 such levels which decompose as 

4A2 @2E@6TI @2T2 , (7)  

for both positive and negative parities. In both sec- 

/ 

P~ 

PZ 

r _  

T 

L 

" PU 

Fig. 2. The momenta of minimal length when m= (1,1,1). The lowest-lying states are constructed from one-gluon states with these 
momenta. 
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x 
Fig. 3. Feynman diagrams required for the calculation ofglueball 
mass shifts at O(g’). The blobs represent the one-loop self- 
energies. 

tom, the zeroth order degeneracy is lifted by 
interactions. 

How are these states related to the infinite volume 
states labeled by J’? When restricted to the cubic 
group, the low spin infinite volume states decompose 

as 

t&A,, l+T, , 2-+E@Tz, 

3+A2 OT, OTz . (8) 

On the grounds of maximum symmetry of the wave 
function one would expect to have a light two-gluon 
A: in a finite volume, and a light O’+ in the infinite 
volume limit. Although the infinite volume states will 
have an overlap with many multigluon perturbative 
states, we may associate these two states. Proceeding 
in this way, adjacent E and Tz levels may be related 
to spin-2 particles, etc. Notice that it is impossible to 
group all the two-gluon levels into infinite volume 
states. At best, one T: is left over. One possibility 
would be for a T: and a T: from the two-gluon sec- 
tor to combine with a three-gluon A,+ (one of which 
we expect to be the lightest in this sector) to form a 
3 +, This is the most economical way of constructing 
a 3+ state. 

To 0(g2) in perturbation theory, we have com- 
puted the energy shifts of the two-gluon levels with 
all lattice artifacts included. The results are discussed 
in the next section. 

Apart from these “glueball masses”, we can also 

compute the energies EC,,,, and E,, ,OJ of the 
Polyakov loops in the corresponding directions. In 
perturbation theory these are non-zero even at zeroth 
order. The simplest way to see this is to note that these 
loops have half-integral momenta due to the twist 
(they pick up a Poynting momentum (n/L)exm). 
In contrast, the loop in the ( 111) direction has inte- 
gral momentum and receives only instanton contri- 
butions [6]. 

3. Results 

In perturbation theory at 0 (go) the energy of the 
lowest-lying two-gluon states is 20, where 

w=Jz n/L (continuum) , 

co= (2/a) arcsinh(fisinz) (lattice) (9) 

is the minimal free one-particle energy (a is the lat- 
tice spacing). At 0(g2), the energy shifts (the shifts 
of the “glueball masses”) are given by the five dia- 
grams of fig. 3. Their continuum values have been 
discussed in ref. [ 5 1, together with the group theoret- 
ical analysis of the spectrum. In this paper we discuss 
the effect of finite lattice spacing, using the conven- 
tional Wilson single plaquette action on a lattice with 
geometry 13x03. The continuum limit corresponds 
to l+co, a-+0, with the physical length of the box, 
L = al, held constant. Fortunately the group theoreti- 
cal considerations of ref. [ 51 remain valid because 
the lattice regularization preserves cubic symmetry. 

The results that we obtain are shown in fig. 4, table 
1 and table 2. Levels are labeled by their cubic group 
representation and by their parity. The effect of finite 
lattice spacing a is only appreciable for the Ai and 
E- states and 1~ 8, and is largely attributable to the 
tree diagrams. The lattice corrections from these dia- 
grams die out as 1t2. The self-energy diagrams typi- 
cally contribute 2-6 in the units of fig. 4, but they 
approach their continuum value slowly, as ld2 log 1. 

The energies of Polyakov loops are determined by 
the self-energy of the gluon polarized in the direction 
of the loop, according to 
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Fig. 4. T h e  O ( g  2) energy shifts o f  the two-gluon states as a funct ion of / .  

Table  1 

O (g2)  shifts o f  the two-gluon energies ("gluebal l  m a s s e s " )  in the posi t ive pari ty sector. The  units are g2/16/t2L, L = al. 

1 A ?  A~ E* E* T ?  T~  T ~  T~  

2 - -71 .87  22.23 - 17.32 34.30 4.79 - 17.87 - 8 . 0 8  10.71 

4 - 7 1 . 3 9  27.98 - 13.08 38.26 16.39 - 2 5 . 4 9  - 1.94 15.68 

8 - 82,89 28.44 - 17.33 39.01 17.60 - 34.00 - 3.21 12.23 

12 - 87.21 27.45 - 19.73 38.15 16.63 - 37.31 - 4.87 10.27 

16 - 89,07 26.85 - 20.87 37.61 16.04 - 38.78 - 5.73 9.31 

24 - 9 0 . 5 9  26.28 - 2 1 . 8 5  37.07 15.46 - 4 0 . 0 1  --6.51 8.47 

32 - 91,18 26.02 - 22.25 36.82 15.20 -- 40.50 - 6.84 8.12 

64 - 91.82 25.71 - 22.70 36.53 14.89 - 41.03 - 7.21 7.72 

oo - 92.08 25.56 - 22.90 36.38 14.74 - 41.26 - 7.39 7.53 

E ( l o o )  = O g - - Y - I ~ F ( I o o )  , 

E(~o) = o 9 - K -  ~X(L~o), (10) 

where o9 is the minimal free one-particle energy, eq. 
(9), Y is the one-particle normalization 

JV'= 2o9 (cont inuum),  

X =  (4 /a )  sinh(½ao9)x/l +sinh:(½aog) 

(lattice),  (I I ) 

and Z(10o) and S(~o) are the self-energy eigenvalues 
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Table 2 
0 (g2) shifts of the two-gluon energies ("glueball masses") in the 
negative parity sector. The units are g2/16~r2L, L= al. 

l Ai- E- Tf 

2 - 22.23 7.26 -2.61 
4 - 54.95 29.22 1.16 
8 -78.11 36.28 - 1.85 

12 - 84.93 36.73 - 3.82 
16 -87.71 36.67 -4.79 
24 -89.89 36.48 - 5.65 
32 - 90.72 36.36 -6.00 
64 -91.59 36.18 -6.41 
oo - 91.93 36.07 - 6.59 

Table 3 
Eigenvalues of the on-shell gluon self-energy at p= (n/L)× 
(0,1,-1) in units of g2/L2, labeled by their eigenvectors 
[/~u=2a -~ sin(½aPu), ~ is its parity conjugate]. The final col- 
umn may also be found from the right-hand side of the Ward 
identity for the self-energy. 

2 0.4923 -0.1886 -0.1515 
4 0.1527 -0.2414 -0.1009 
8 0.1894 -0.0756 -0.0408 

12 0.2373 -0.0131 -0.0219 
16 0.2609 0.0151 -0.0138 
24 0.2819 0.0392 -0.0070 
32 0.2907 0.0491 -0.0043 
64 0.3008 0.0603 -0.0013 
cc 0.3057 0.0653 0 

O 
Fig. 5. The Feynman diagrams contributing to the right-hand side 
of the Ward identity for the self-energy. 

larizations are replaced by either of the unphysical 
polarizations, as we have explicitly verified). In view 
of the complicated lattice Feynman rules (especially 
the four gluon vertex), this is a very reassuring check 
on our calculation. 

A similar Ward identity exists for the self-energy 
Xu~, but on the lattice with a twist it takes a rather 
unexpected form. The BRST identity at one loop is 

puSu~=Iu(pup~-Ou,`6 z) , (12) 

where`6u = 2a -~ sin (½ ap u), Su~ is the sum of the self- 
energy diagrams, and I u is given by the two diagrams 
of fig. 5. 

In the con t inuum limit ( a ~ 0 ,  `6~,--'Pu), Iu is pro- 
portional to Pu and therefore the right-hand side of 
eq. (12) vanishes. On the lattice with a twist this is 
not the case. Nevertheless eq. (12) in this lattice form 
still forbids the propagation of unphysical polariza- 
tions. We computed both sides of the identity on-shell 
( ,62=0) on lattices up to size 6 4 3 × ~ ,  and found ex- 
cellent agreement. The third column of table 3 gives 
the calculated values. 

with the polarizations as eigenvectors. The values of 
these eigenvalues for a variety of values of l are given 
in table 3. 

5. Inclusion of fermions 

4. Ward identities 

An important  feature of gauge theories is that 
physical states couple only to the transverse parts of 
gauge fields; the longitudinal modes decouple. This 
is the content of the Ward identities. Consequently, 
energies (for example) are determined by matrix ele- 
ments between physical helicity states only. 

We have checked that the Ward identities forfinite 
lattice spacing are obeyed. In particular, the O(g  2) 
tree diagrams should satisfy transversity (i.e. their 
sum should vanish if one or more of the physical po- 

Fermions do not fit comfortably into a gauge the- 
ory with twisted boundary conditions. Typically we 
want fermions in the fundamental  representation of 
the gauge group, but twisted boundary conditions can 
only be applied to the adjoint representation, which 
is insensitive to the group centre. In order to over- 
come this problem, we introduce two flavours of fer- 
mion IN flavours in an SU (N) theory] and include 
a flavour transformation in the boundary  conditions: 

~(x+ekL)  = (iak) ® (iak)*~U(X), 

~(X+ekL) = ~(X) 0ak)*® (ia~) , (13) 

where the first matrix acts on colour, the second on 
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flavour. The flavour transformation removes the sign 
ambiguity induced by the colour transformation. 

At O(g  2) fermions only enter our calculation 
through the gluon self-energy. We have computed the 
effect of the fermions in the continuum limit and find 
that their contribution increases the self-energy by 
precisely one quarter. This shifts the energy levels 
down a little, but has very little effect on their relative 
separation. 

6. Conclusions 

We have studied the finite lattice spacing correc- 
tions to the lowest-lying energy levels of SU (2) lat- 
tice gauge theory with twist m = ( 1, 1, 1 ), calculated 
to O(g  2) in perturbation theory. In general, O(a  2) 
effects are small even for •=4. This is not true in the 
negative parity sector, however. In particular the per- 
turbative shifts of the Ai- and E-  states suffer sub- 
stantial lattice corrections at •=4. At small I (a large 
relative to L) the dominant corrections come from 
tree diagrams, but these effects die out as 1-2 . Quan- 
tum corrections from the self-energy, which are 
smaller, approach their continuum values only loga- 
rithmically (as 1-2 log [) and so lattice effects here 
persist to large l. 

One of the motivations for this study was to rec- 
oncile our earlier perturbative results in the contin- 
uum with the Monte Carlo data of ref. [ 7 ]. Mean- 
while, these simulations have progressed and their is 
now data at various values of fl= 4/g  2 in the range 
2.5-4.7 [8 ]. For the positive parity sector, there is 
qualitative agreement on the spectrum in the sense 
that the perturbative results fit the Monte Carlo data 
if we make a rescaling of the coupling constant. How- 
ever, it is only at f l= 4.7, the weakest coupling yet ex- 
amined, that simulation and perturbation theory are 
quantitatively in accord within errors, for both posi- 
tive and negative parity sectors (except for the A + ), 
and without any ad hoc rescaling of the coupling. For 
purely periodic boundary conditions [ 9 ] on the other 
hand, tunneling-improved perturbation theory works 
well from about fl= 2.5, in small volumes. 

We have also studied the perturbative corrections 
to the energies of Polyakov loops. For the values offl 
at which the glueball spectrum indicates the validity 
of perturbation theory, these corrections are very 

small, so we expect E(~oo):E(llo):E(~ll)= 1:1:0. As 
the physical size L grows, we expect a transition to 
the string regime E(loo):Etllo):E(~ll)= 1 :x/~:x/~. 
These expectations are confirmed by simulations on 
lattices of spatial size 4 3, 8 3 and 123 [8], which we 
hope will be extended in the future. 

A second, and more important motivation for our 
work in refs. [3,5], which we continue here, is the 
intuitive expectation that finite size effects should be 
smaller with twisted boundary conditions. This idea 
is based on the absence of zero-momentum modes, 
and the fact that the one-particle momenta are closer 
together, making the box seem bigger. Our perturba- 
tive results tend to confirm this, in the sense that the 
spectrum does not change qualitatively from its per- 
turbative form as we go to larger and larger volumes. 
In particular, the 0 ÷ ( ~Ai  ~) starts out and remains 
the lightest state, followed, in the positive parity sec- 
tor, by the 2 ÷ ( ~ E ÷ ~3T~- ). This is in sharp contrast 
to the position with periodic boundary conditions. 
However, in the negative parity sector the 2-  
( ~ E -~T~-  ) behaves in a qualitatively similar man- 
ner to its counterpart in the periodic case. Also the 
0 -  ( ~ Ai- ) suffers comparable finite size effects. 

Finally we make a comment about the mass gap m. 
In an idealized lattice simulation, masses are ex- 
tracted in terms of the variable z =  mL. The contin- 
uum limit is extracted by simultaneously increasing l 
and decreasing the bare coupling g2, while keeping a 
fixed value of z. Eventually the infinite volume limit 
is reached by increasing z. However, our lowest order 
perturbative result (see first column of table 1 ) in- 
dicates that z is smaller than 2o9, where 09 is the min- 
imal one-particle energy, eq. (9). Therefore higher 
order perturbative corrections and non-perturbative 
effects are instrumental in achieving the physical 
range of z values [ 10 ]. In order to see what is going 
on we appeal to the data of  ref. [ 8 ] and show them 
in fig. 6. The horizontal axis exhibits the length L of 
the box in terms of the inverse large string tension. 
For small enough values of this variable all the quan- 
tities mL, in particular the mass gap 0 +, coincide, 
within errors, with the predictions in tables 1 and 2. 
As L is decreased, the mass gap at first decreases and 
then, beyond a critical value ( L ~  1/v/-x, where x is 
the large volume string tension), starts to increase. 
Thus the very small L "coulombic" behaviour of  the 
gap, that would have rendered it unstable at large L, 
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Fig. 6. Monte Carlo data for the glueball spectrum with both periodic and twisted boundary conditions. The horizontal scale is the box 
length in units of 2.98/x/~, where x is the large volume string tension at the same p. Taken from ref. [8 ]. 

is o v e r c o m e  at this point .  To unde r s t and  h o w  is the 

great  challenge.  
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